St. Cloud WTF Advanced Process Improvements Strategic Sequencing to Maintain Treatment Objectives During Construction

Jason Kosmatka PE Senior Project Manager AE2S

> ST. CLOUD WATER TREATMENT FACILITY

ST.CLC

Outline

Planning and Sequencing

SCWTF Advanced Process Improvements Project Construction

Project Background

Project Background

Capacity: 24 mgd Raw water: Mississippi River First WTP on the Mississippi River St. Cloud

Pre-Project: Treatment Overview

Class A Conventional Lime Softening Facility

Pre-Project Treatment Trains (3 Total)

Raw Water Quality

Raw Water Quality

Treatment Challenges

St. Cloud WTP AOP Pilot Study

Principal Investigator: Qigang Chang, PE, PhD Engineer of Record: Jason Kosmatka PE

What is AOP?

Advanced oxidation processes (AOPs) refers to chemical treatment procedures designed to remove organics in water by oxidation through reactions with strong oxidizing reagent, usually hydroxyl radicals (·OH).

No.	Name of Oxidant	Oxidation Potential (eV)
1	Hydroxyl radical	2.8
2	Ozone	2.1
3	Hydrogen peroxide	1.8
4	Potassium permanganate	1.7
5	Chlorine dioxide	1.5
6	Chlorine	1.4

Advanced Physicochemical Treatment Processes. Edited by Lawrence K. Wang, Yung-Tse Hung, Nazih K. Shammas

How to Form AOP?

- Ozone + UV light
- Ozone + H_2O_2
- UV + H_2O_2
- High pH Ozonation

What is **Bio-Filtration**?

Filtration with Biodegradation

- The microbial growth attached to the filter media (biofilm) and consumes the organic matter that would otherwise flow through the treatment plant and ultimately into the distribution system.
- > Remove contaminants by three main mechanisms:
 - Biodegradation
 - Adsorption
 - Filtration of suspended solids

Pilot Study Process Flow Diagram

Three Alternatives

- A. Conventional Filtration + UV/H_2O_2 for primary disinfection
- B. AOP + Biofiltration + free chlorine primary disinfection
- C. AOP + Biofiltration + UV primary disinfection

Peroxone (Ozone + H₂O₂) Pilot Skid

Peroxone (Ozone+H₂O₂) & UV Pilot Skid

Ó,

Filter Pilot Skid

Peroxone + Biofiltration Alternative

Ozone + Biofiltration Alternative

Biomass Measurement

Biological Filtration?

۲

27

Ē 🕒

Organic Removal

Total Organic Carbon

•

Major Takeaways

At the Pilot Study Testing Conditions

AOP

- 1. Ozone and peroxone can remove 80-90% Geosmin and MIB.
- 2. Peroxone outperforms ozone for bromate formation. Bromate is unlikely a concern for St. Cloud WTP future ozonation process.
- 3. UV AOP can remove 70-85% Geosmin and MIB. Increasing of UV dose and H_2O_2 dose will generally increase the removal rate of Geosmin and MIB.

Major Takeaways

At the Pilot Study Testing Conditions

Biologically Active Filtration (BAF)

- 1. BAC can reduce Geosmin and MIB concentrations near zero even at high background concentrations
- 2. Higher biomass was observed on biological BAC filters and performed better than BAF filters with regarding to organic reduction and T&O removal.
- 3. BAC effluent turbidities with a sand layer are comparable as the full-scale filters.
- 4. Ozonation increases DO and biofiltration stabilized the water.

Selection of Preferred Alternative

Alternative Ranking Summary

Alternative	Treatment Technology		Imple	ementation	Estimat Presen	Overall Ranking		
	Score	Ranking(A)	Score	Ranking(B)	Cost (\$M)	Ranking(c)	(AxBxC)	
ALTERNATIVE A - Conventional Filtration with UV- H_2O_2	61.1	7.85	71	8.77	\$36.9	8.94	615	
ALTERNATIVE B - Ozone with BAC Filtration and Chlorine Disinfection	72.2	9.28	71	8.77	\$33.0	10.00	813	
ALTERNATIVE C - Ozone with BAC Filtration and UV Disinfection	77.8	10.00	81	10.00	\$38.1	8.66	866	

1) Rank scores are normalized versions of each individual score relative to the final three (3) alternatives.

2) Higher Scores indicate the more favorable alternative

•

•

03 + BAC Filtration + UV

Benefits

- Reduction of DBP precursors
- Eliminated Taste & Odor
- Eliminate the use of PAC
- Reduce or eliminate the use of potassium permanganate
- Reduce the use of chlorine and limit free chlorine contact time

Advanced Process Improvements Project -Strategic Sequencing

Major Project Components

- Replace Traveling Water Screen
- Replace Wet Chlorine Scrubber with Dry
- Roof Waterproofing Replacement
- Baffling of the 1990's Clearwell and adding a Chlorine Contact Chamber
- Conversion of the 1950's Clearwell to house Advanced Treatment Equipment
- UV reactors for primary disinfection (first WTF in MN with this technology)
- Conversion of filters to BAC filters
- Ozone Generation with LOX

Treatment Challenges

- 1. Continually meeting treatment goals
- 2. Continually meeting water demand
- 3. Balancing OCCT, DBPs, CT
- 4. Meeting Disinfection Credit
 Water temp 1-25°C
 Elevated pH >9.3
 Varying Clearwell levels
 Variable TOC

 - Variable ammonia/Cl2:NH3 ratio
 - **Removing 1 MG of Storage/Detention**

Construction Challenges

- 1. Only 1 Ozone Contact Basin for FTII/III
- 2. 1.5 MG Clearwell BF=0.3
- **3. Limited WTP shutdown time**
- 4. Limited Hydraulic Grade

EXISTING WATER TREATMENT FACILITY

TRAIN I

Rapid Mix

Flocculation

Clarification

۲

Rapid Mix Chamber

Flocculation

Lime Softening Basin

PP - Potassium Permanganate PAC - Polyaluminum Chloride

ALU - Alum LIM-Lime CO2 - Carbon Dioxide

PHO - Phosphate CHL - Chlorine

POL - Polymer

AM - Ammonia FLU - Fluoride

INC

5103

ADVANCED TREATMENT IMPROVEMENTS

Ozone readily oxidizes organic compounds commonly found in Mississippi River water. It is also effective for inactivation of waterborne pathogens and viruses.

SIOLOGICALLY ACTIVATED **CARBON (BAC) FILTRATION** GAC has physical properties capable of adsorbing dissolved contaminants, including taste and odor causing compounds and emerging contaminants. Biological activity on GAC media can enhance treatment effectiveness, particularly when combined with ozone treatment.

ULTRAVIOLET (UV) Ő DISINFECTION

DISINFECTION UV disinfection can be used as the primary disinfection process. UV disinfection would compliment the other advanced treatment technologies and reduce the potential formation of regulated disinfection by-products.

Strategic Sequencing

Planning For All Scenarios

Introduction

The intent of this technical memorandum (TM) is to describe the future disinfection strategy for the St. Cloud Water Treatment Facility (SCWTF). This TM will provide an overview of each removal and inactivation process and how each will be used to obtain both the U.S. Environmental Protection Agency (USEPA) required log treatment and also the SCWTF treatment goals. Subsequent TMs will detail the CT calculations during various scenarios for both ozone and UV light.

A regulatory overview is presented in the first section to provide a background of the inactivation/removal requirements with its associated rule. The second section will describe the existing disinfection strategy with the use of conventional treatment and chlorine/chloramine disinfection. Section three will describe the proposed disinfection strategy using conventional treatment, ozone, UV light, and chloramine disinfection. The last section will describe how the required disinfection will be met during construction when certain processes or clearwells are taken out of service.

Disinfection Requirement Overview

Think Big, Go Bevond,

The Safe Drinking Water Act (SDWA) was enacted in 1974 and authorized the Environmental Protection Agency to set national standards and promulgate subsequent rules. There are several pathogens that are of concern when it comes to drinking water disinfection. The USEPA is particularly concerned about regulating Cryptosporidium (Crypto), Giardia lamblia

> Page 1 of 12 RES

www.ae2s.com

Strategic Sequencing

Upgrades of 1990s clearwell

- Chlorine Contact Chamber
- Baffling to get BF = 0.7

Repurposing of 1950s clearwell

• House advanced treatment equipment

UV reactors operational

- Temperature independent
- Can turn off pre-filter chlorine

Conversion of conventional filters to BAC

Biological before high DO

Ozone system operational

Seasonal Disinfection **Strategy**

Chlorine Breakpoint Curb from IXOM Watercare.

Pre-Project Disinfection Profile

Instantaneous Log Inactivation Calculator

1950's Clearwell Conversion

Advanced Process Improvements

Chlorine Contact Chamber

1990's Clearwell Baffling

Clearwell Conversion

UV Reactors

Advanced Process Improvements

Ozone Generation

Best laid plans of mice and men...

Unanticipated Challenges

• Bidding during COVID

- Zero Bids
- Supply Chain Issues
- Cost Escalation
- Minimal Hydraulic Grade
 - Siphoning
 - Air in Magmeters
 - & UV reactors
- High pH ozonation
 - Transfer Efficiency

- Groundwater
- Maintaining CT
 - GAC Adsorption
 - UV reactor air

Groundwater Issue

Clearwell Conversion

Groundwater Solution

Clearwell Conversion

Disinfection Issue

Post-Project Disinfection Profile

Disinfection **Solution**

Coordinate with Reviewing Authority

CT and Log Inactivation Calculations for SCWTF with Chlorine This scenario is for replacing north filter's media (Mar. 2023)

					6.0	MGD 4,167	gpm
Scenario A: Winter Flow =		4167	gpm				
Some Residual thru south filters	Free	Free	Combined	Combined	Combined		
	S. Filters	Underdrain+36"	48" Pipe	TK6200	TK6300		
Volume (gallons)	107,625	111,044	28,626	964,696	94,225	Inpu	ts
Average-Peak-Hourly-Flow (gpm)	4,167	4,167	4,167	4,167	4,167	pH =	9.0
Theoretical DT (min)	26	27	7	232	23	Temp (C) =	0.5
Baffling Factor	0.7	0.7	0.7	0.7	0.1		
T-10 (Minutes)	18.1	18.7	4.8	162.1	2.3		
Cl2 Residual (ppm)	2.0	0.6	2.0	2.0	2.0	Some of the chlorine is being adsorb	ed by the GAC, but a 0.6 mg/l residual is carrie
Actual CT Value	36.2	11.2	9.6	324.1	4.5		
pH	9.0	9.0	9.0	9.0	9.0		
Temperature (C)	0.5	0.5	0.5	0.5	0.5		
CT-Giardia (0.5-log)	83	68	635	635	635		
Log Inactivation - Giardia	0.218	0.082	0.008	0.255	0.004	0.57 log Giardia ina	ctivation achieved
CT-Viruses (2.0-log)	6	6	1,243	1,243	1,243	(Table C-7, pH 6.0 - 9.0)	
Log Inactivation - Viruses	12.053	3.731	0.015	0.521	0.007	16.328 log Virus inact	ivation achieved

= Required Input

Scenario B: Winter Flow =		4167	gpm		6.0	MGD
No residual through south filters	Free	None	Combined	Combined	Combined	
	S. Filters	Underdrain+36"	48" Pipe	TK6200	TK6300	
Volume (gallons)	107,625	111,044	28,626	964,696	94,225	Inputs
Average-Peak-Hourly-Flow (gpm)	4,167	4,167	4,167	4,167	4,167	pH = 9.0
Theoretical DT (min)	26	27	7	232	23	Temp (C) = 0.5
Baffling Factor	0.7	0.7	0.7	0.7	0.1	
T-10 (Minutes)	18.1	18.7	4.8	162.1	2.3	
Cl2 Residual (ppm)	3.0	0.0	2.0	2.0	2.0	
Actual CT Value	54.2	0.0	9.6	324.1	4.5	
pH	9.0	9.0	9.0	9.0	9.0	
Temperature (C)	0.5	0.5	0.5	0.5	0.5	
CT-Giardia (0.5-log)	92	83	635	635	635	
Log Inactivation - Giardia	0.295	0.000	0.008	0.255	0.004	0.56 log Giardia inactivation achieved
CT-Viruses (2.0-log)	6	6	1,243	1,243	1,243	(Table C-7, pH 6.0 - 9.0)
Log Inactivation - Viruses	18.080	0.000	0.015	0.521	0.007	18.62 log Virus inactivation achieved

4167 gpm

Disinfection Solution

Coordinate with Reviewing Authority

This document intends to provide an overview of the disinfection credits achieved at SCWTF via chlorine and chloramine disinfection between 5:00am February 11, 2023 and noon February 17, 2023. During this period, the Plant Clearwell TK6200 was out of service due to a planned construction activity.

Plant Operation Conditions Summary:

Disinfection goals: 2.0 Log virus and 0.5 Log *Giardia* Disinfectant: chlorine and chloramine Flow rate: 6 mgd pH: 9.0 Temperature: 0.5 degree C Chlorine feed point: filter split box Ammonia feed point: 48" pipe (combined filter effluent)

Table 1. CT at pH 9 and temperature 0.5 Degrees Celsius

Chlorine/chloramine	CT (mg		
concentration (mg/L)	Free Chlorine	Chloramine	Notes
/	6	1,243	
2.0 mg/L chlorine	83		
2.2 mg/L chlorine	635		
2.4 mg/L chlorine	87		
Page 1 of 5			
RES		www.ae2	s.com
	Chlorine/chloramine concentration (mg/L) / 2.0 mg/L chlorine 2.2 mg/L chlorine 2.4 mg/L chlorine Page 1 of 5	Chlorine/chloramine (mg/L) CT (mg/L) / 6 2.0 mg/L chlorine 83 2.2 mg/L chlorine 85 2.4 mg/L chlorine 87	Chlorine/chloramine concentration (mg/L) Cf (mg·min/L) Image: Chlorine (mg/L) Free chlorine Chloramine Image: Chlorine (mg/L) Free chlorine Chloramine Image: Chlorine (mg/L) Image: Chlorine Chloramine Image: Chlorine (mg/L) Image: Chlorine Image: Chlorine Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L) Image: Chlorine (mg/L)

Thank you! Questions?

Jason Kosmatka Senior Project Manager Jason.kosmatka@ae2s.com

Advanced Engineering and Environmental Services, LLC