The Impossible Triangle:

Balancing Quality, Efficiency, and Cost Can You Really Have It All?

T. Hall, Water Utility Director, Fargo Q. Chang, Senior Advanced Technical Specialist, AE2S

Cos

Quality

Fricher Creeks

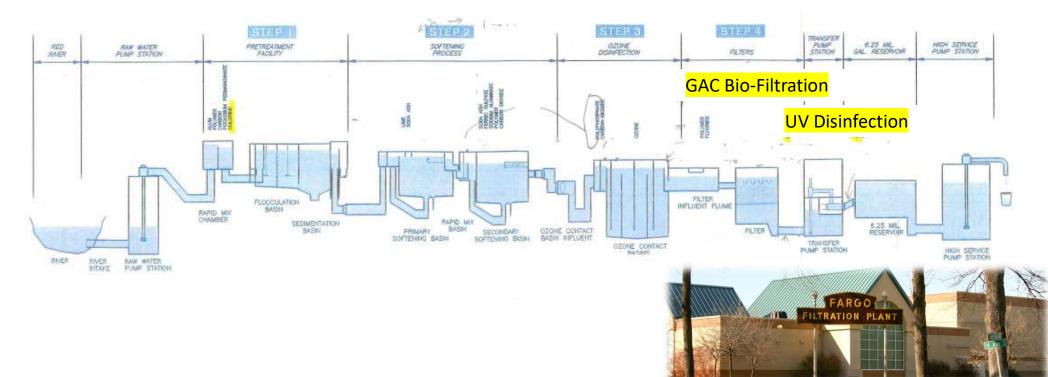
OUTLINE

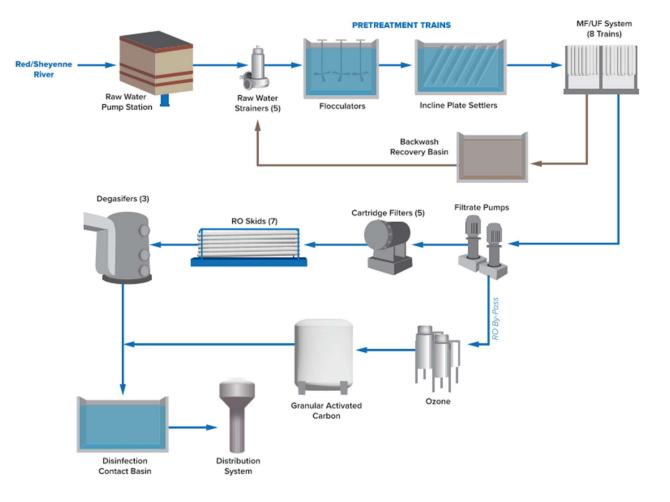
1. Fargo Water Utility Overview

- Water Treatment Plant Overview
- Raw Water
- Plant Performance

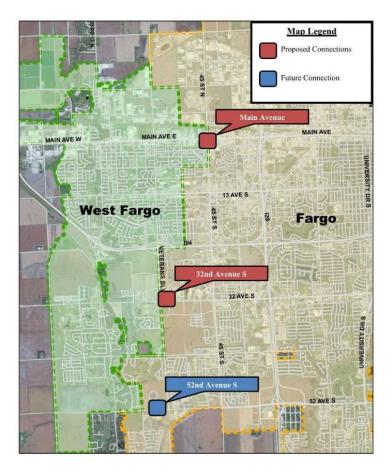
2. Impossible Triangle

- Quality
- Efficiency
- Cost
- 3. Strategies and Innovations to Get the Job Done

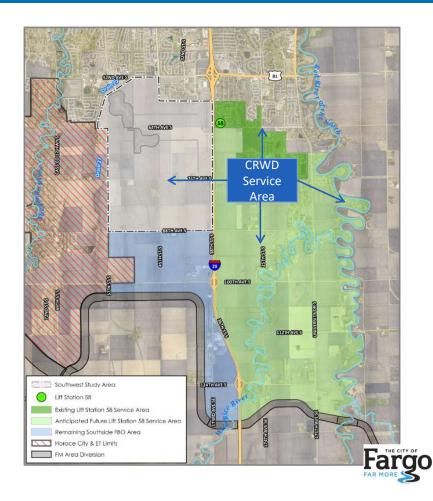

Fargo Water Utility Overview


- 30 MGD Lime Softening WTP (1997)
- 15 MGD Integrated Duo Membrane WTP (2018)

Fargo Lime Softening WTP

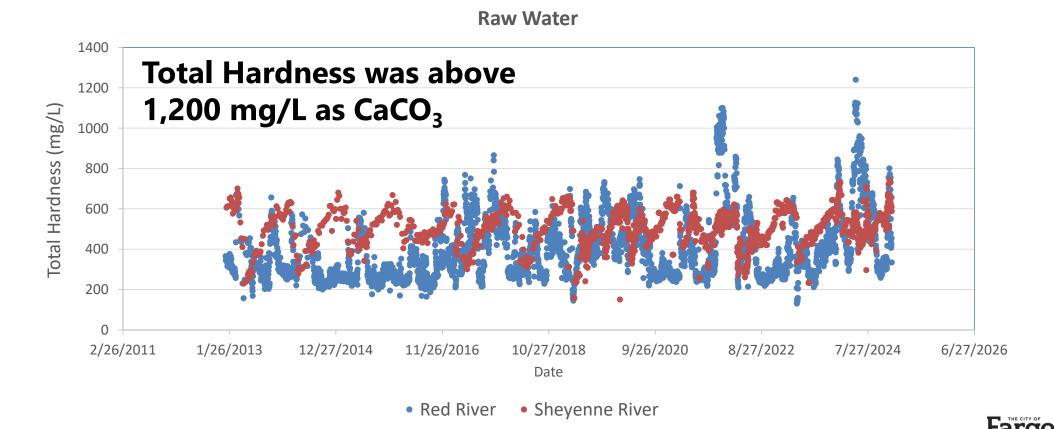

- Fargo Water Treatment Plant (WTP) in operation since 1912
- Current WTP completed in 1997 with a capacity of 30 million gallons per day (mgd)

Fargo 15 MGD Integrated Duo Membrane WTP



Regional Water System

Fargo Population 137,989

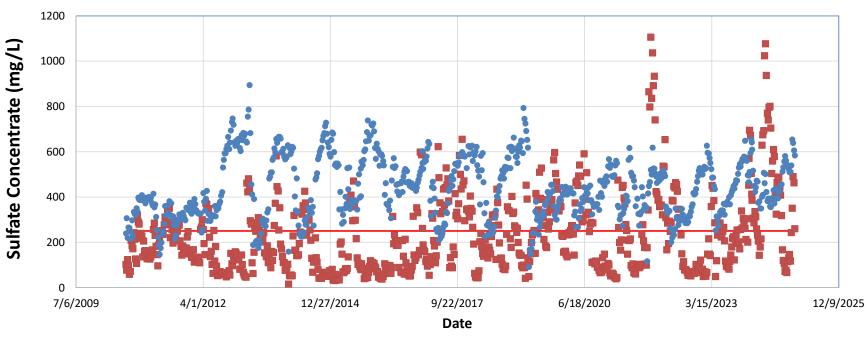

Regional Population ~200,000

Fargo Raw Water Overview

Fargo WTP Raw Water Total Hardness

Fargo WTP Raw Water Total Hardness

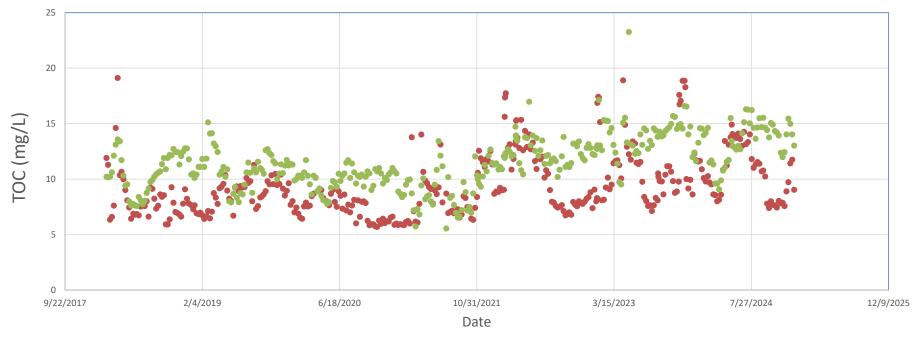
River Total Hardness - Annual Maximum


Red River Annual Max Total Hardness

Sheyenne River Annual Max Total Hardness

Rivers are increasingly exhibiting more extreme variations in water quality.

Fargo WTP Raw Water - Sulfate


• Sheyenne River — SMCL

Red River

Fargo WTP Raw Water Sulfate

Fargo WTP Raw Water - TOC

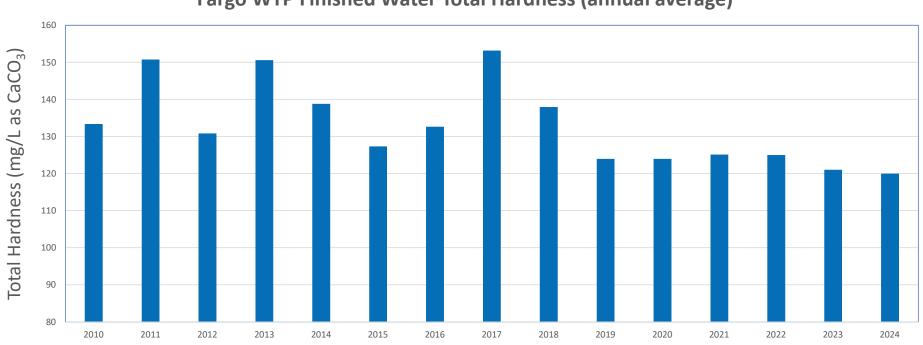
Raw Water TOC

• Red River • Sheyenne River

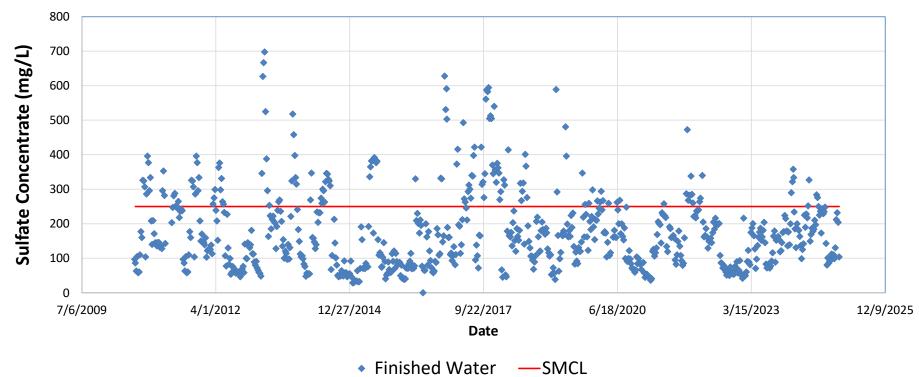
Fargo WTP Finished Water Goals

Meet EPA Primary Drinking Water Standards

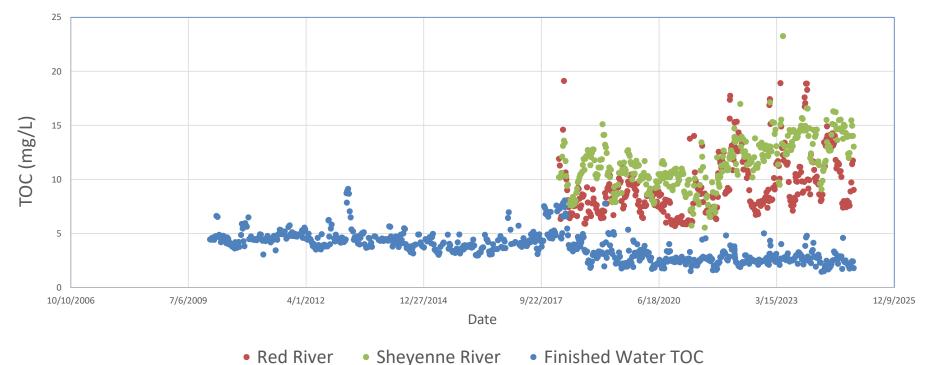
Total Hardness: 115-130 (120) mg/L as CaCO₃


Sulfate: <250 mg/L

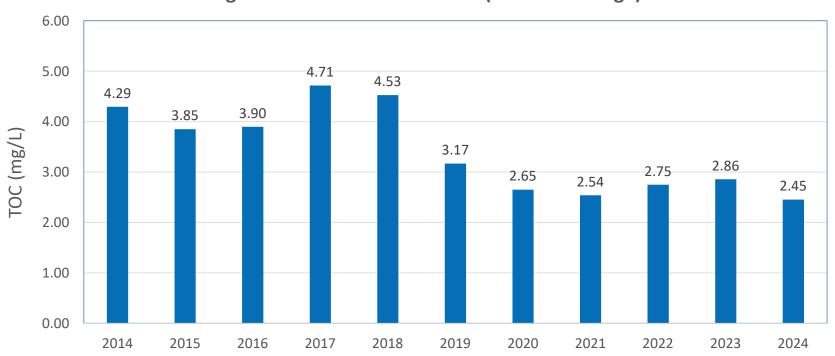
Taste and Odor: no complaints


Fargo WTP Finished Water – Total Hardness

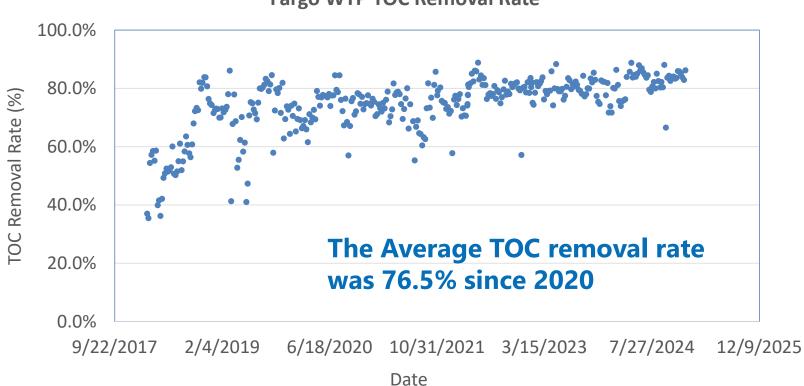
Fargo WTP Finished Water Total Hardness (annual average)


Fargo WTP Finished Water – Sulfate

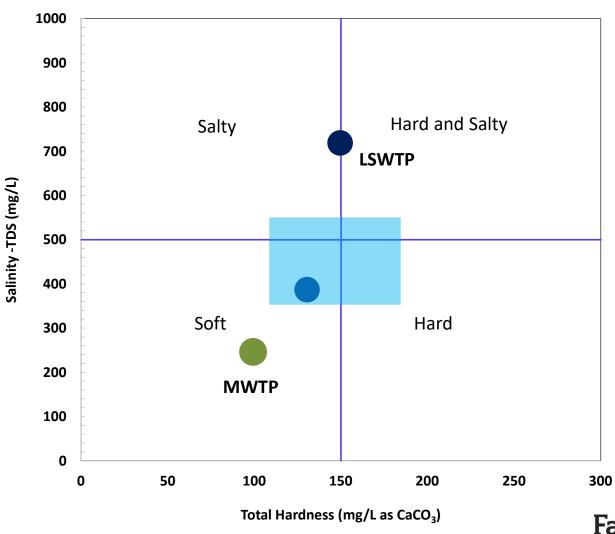
Fargo WTP Finished Water Sulfate


Finished Water TOC vs Raw Water Natural Organics

Finished Water TOC

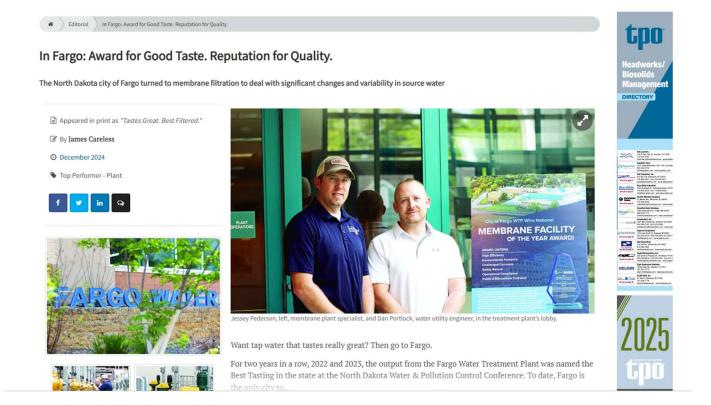

Finished Water TOC (Annual Average)

Fargo WTP Finished Water TOC (Annual Average)


Finished Water TOC (Annual Average)

Fargo WTP TOC Removal Rate


Water Quality Quadra


Fargo WTP Community Engagement and Recognitions

Public Education

Plant tours to K-12 students, college students, and professionals.

TPO. November 2024

https://www.tpomag.com/editorial/2024/12/in-fargo-award-for-good-taste-reputation-for-quality

Top-Tier Operation Staff

AMTA and AWWA announce awardees at the Membrane Technology Conference & Exposition

February 25, 2022
Press Releases

The American Membrane Technology Association (AMTA) and the American Water Works Association (AWWA) announced awardees at the 2022 Membrane Technology Conference & Exposition (MTC) in Las Vegas.

Brian Ward of the City of Fargo Water Treatment Plant in Fargo, N.D., was presented with this year's Robert O. Vernon Operator of the Year Award. The award recognizes outstanding contributions by a plant operator working at a membrane filtration, desalination or water reuse facility that resulted in significant, long-term improvement in water production and/or water reuse.

We Care About Water Quality

City of Fargo Drinking Water Named National Runner-up for

PEOPLE'S CHOICE

2nd Place

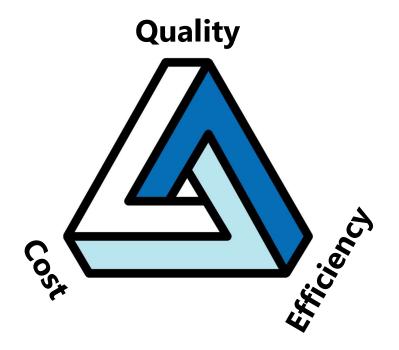
ople's Choice Water Taste Test

AN

2024 Water Taste Test

Presented by:

American Water Works Association


The event included regional winners from water tasting competitions around the globe, and was held at AWWA's Annual Conference and Exposition (ACE24) in Anaheim, California. ACE24, which brought an estimated 11,000 water professionals to Anaheim, is the longest-running water conference in the world, having first convened in 1881.

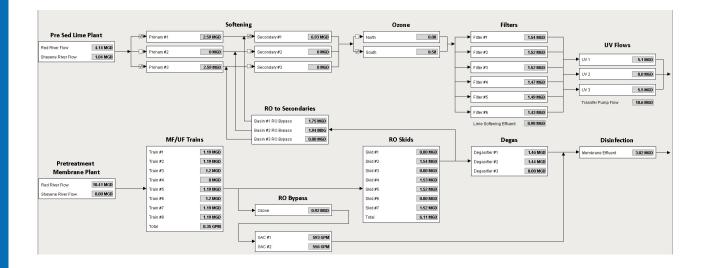
2024 Membrane Facility of the Year Award

Impossible Triangle Quality, Efficiency, Cost

Win Them All

How to operate two plants in a way to achieve:

Great Water Quality



3

High Efficiency

Low Cost

Operation Strategies

Operation Scenarios

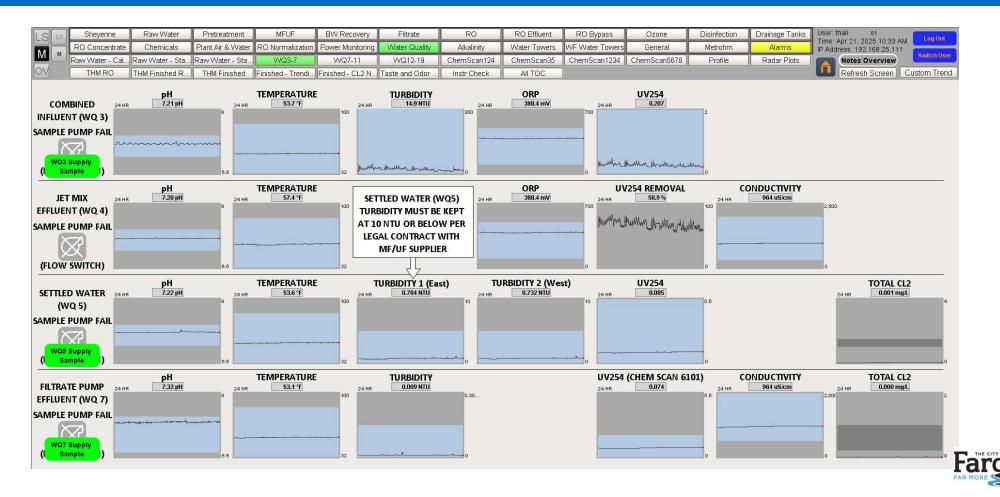
	L	SWTP	MV	RO Transfer			
Scenario No.	RED	Sheyenne	RED	Sheyenne			
1	х		х				
2	x		х		x		
3	х			х			
4	х			х	x		
5		х	х				
6		х	х		x		
7		х		х			
8		х		х	x		
9	х	х	х				
10	х	х	х		x		
11	x	x		х			
12	х	x		х	x		
13	x	x	х	x			
14	x	x	x	x	x		

Operation Strategies

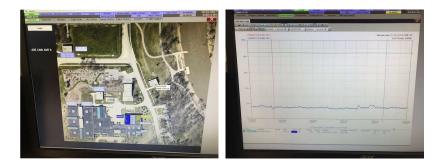
Operation variables:

- 1. Raw water selection: two rivers
- 2. Flow split between two WTPs
- 3. Intermediate RO permeate transfer between two WTPs
- 4. Finished water quality from each plant
- 5. 13 chemicals

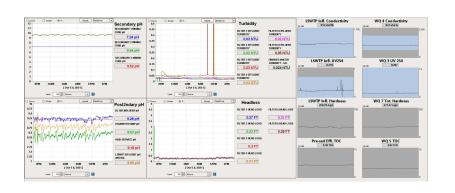
Production Cost Model: A real time chemical cost estimate based upon real-time water quality monitoring


Team Approaches

Fargo WTP has been working closely with NDDEQ, ND PFA, and DWR on various projects aimed at improving finished water quality and enhancing overall plant efficiency.



Tools in Place for Operational Improvement A New SCADA System

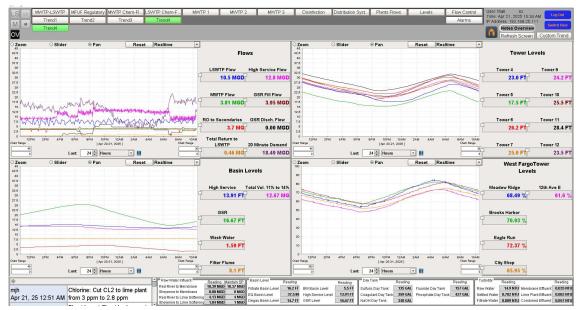


Information Speed with New SCADA System Over 100x Faster for Operations Personnel

Past Fargo WTP SCADA System

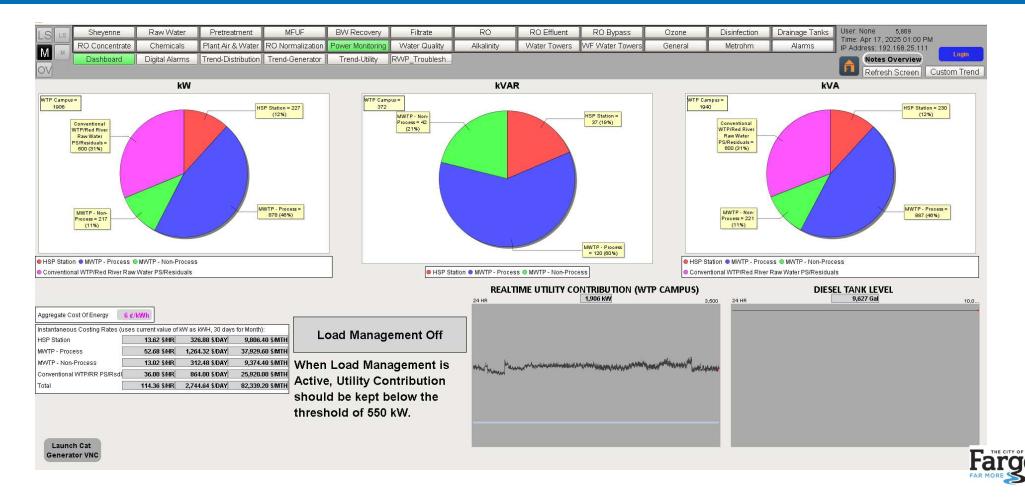
- 4 mouse clicks to get trend of single data point
- Slight data Retrieval delay
- Data point not trended with other related data
- Limited performance 'information'

New Fargo WTP SCADA System


- Each mouse click 4 to 6 different trend graphics
- Multiple related data point on each screen
- Graphic load quickly (minimum delay)
- Example screen has 27 trended data points
- 4 mouse clicks get roughly 108 data points trended

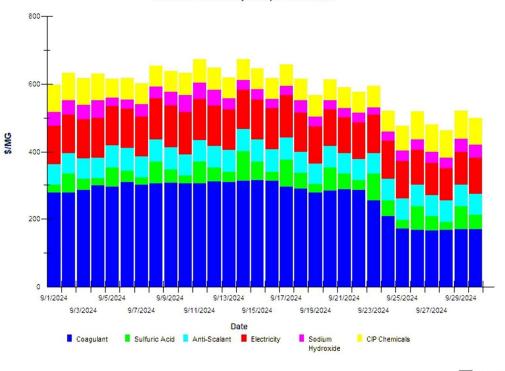
Times about 15 end users \rightarrow 1,500 times faster plant-wide!

Full WTP Assessment in Seconds to Minutes



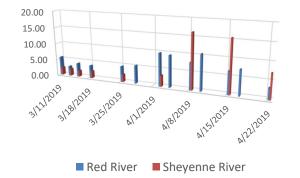
Tools in Place for Operational Improvement Chemical Cost Calculator

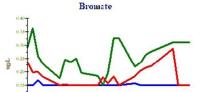
LS	Sheyenne	Raw Water	Pretreatment	MFUF	BW Recovery	Filtrate	RO	RO Effluent RO Bypass Water Towers WF Water Tower		O Bypass	Ozone	Ozone Disinfection		Drainage Tanks User: thall 1				Log Ou
	RO Concentrate	Chemicals	Plant Air & Wate	r RO Normalization	Power Monitoring	Water Quality	Alkalinity			Genera	General Metrohm		Time: Apr 17, 2025 01:01 PM Alarms IP Address: 192.168.25.111					
	Ambient Gas	Sulfuic-PACL-Bi	Citric-Anti-H2O2	Fluoride-Phosph	Sodium Hydroxide	Copper Sulfate	Dosing	Transf	Transfer Chlorine		Ammoni	ia 📕 Digital Alarms		Level and Press		Notes Over	rview	Switch Us
OV	Cost Calculations													Refresh Screen Custom Tren				
		Cho	nical Rumn					Chemical			\$ / 1.000	Coloulated	Calculated	Calculated	Calculated	Cost/Dav	Cost/1,000	-
	Chemical Name	Chemical Pump nemical Name Description		Feed P	oint	Cost (\$ / Ib)	Dosage	\$ / Day	Finished	Flow	Dosage	\$ / Day	\$ / 1,000		Difference			
	PACI			COAGULANT METERING P	UMP NO. 1	Coagulant-PACL		\$0.28	55 PPM	0\$	0.00 \$		35 mg/L	0\$	0.00 \$	0 \$	0.00 \$	I OF
	PACI	!]16_C		COAGULANT METERING P	UMP NO. 2	Coagulant-PACL		\$0.28	55 PPM	2,438 \$	0.18 \$		35 mg/L	825 \$	0.16 \$	-1,613 \$	-0.02 \$	1
	Sulfuric Acid -93%	!]16_C	MP_1103 SL	JLFURIC ACID METERING	PUMP NO. 1	Sulfuric Acid 1		\$0.1023	34.68 PPM	562 \$	0.04 \$		22.42 mg/L	193 \$	0.04 \$	-368 \$	0.00 \$	4
	Sulfuric Acid -93%	16_ C	MP_1203 SU	JLFURIC ACID METERING	PUMP NO. 2	Sulfuric Acid 1		\$0.1023	34.68 PPM	0\$	0.00 \$		22.42 mg/L	0\$	0.00 \$	0 \$	0.00 \$	1
	Sulfuric Acid -93%		MP_1303 SU	ULFURIC ACID METERING	PUMP NO. 3	Sulfuric Ac	id 1	\$0.1023	34.68 PPM	0\$	0.00 \$		22.42 mg/L	0\$	0.00 \$	0 \$	0.00 \$	4
						Pretreatment	Totals			3,002 \$	0.22 \$	10.1 MGD		1,019 \$	0.20 \$	-1,983 \$	0.02 \$	4
	Anti-scalant	Anti-scalant [] 16_CMP_4103 ANTISCALANT METERING PUMP NO. 1		PUMP NO. 1	Antiscala	int	\$3.35	2 PPM	0\$	0.00 \$		1.48 mg/L	0\$	0.00 \$	0\$	0.00 \$	4	
	Anti-scalant 💽 16_CMP_4		MP_4203 AI	NTISCALANT METERING	PUMP NO. 2	Antiscala	ant	\$3.35	2 PPM	660 \$	0.05 \$		1.48 mg/L	254 \$	0.05 \$	-406 \$	0.00 \$	1
				Antiscalant/R() Totals			660 \$	0.05 \$	6.13 MGD		254 \$	0.05 \$	-406 \$	0.00 \$	4		
	Fluoride	[] 15_C	MP_6103	FLUORIDE METERING PL	JMP NO. 1	Fluorid	e	\$0.22	0.65 PPM	16 \$	0.00 \$		0.7 mg/L	7\$	0.00 \$	-10 \$	0.00 \$	4
	Fluoride	!]15_C	MP_6203	FLUORIDE METERING PL	JMP NO. 2	Fluoride		\$0.22	0.65 PPM	0\$	0.00 \$		0.7 mg/L	0\$	0.00 \$	0\$	0.00 \$	1
	Phosphate	<u> </u>		PHOSPHATE METERING P	UMP NO. 1	Phosphate		\$1.13	0.5 PPM	0\$	0.00 \$		0.5 mg/L	0\$	0.00 \$	0\$	0.00 \$	4
	Phosphate		MP_7203 F	PHOSPHATE METERING P	UMP NO. 2	Phospha	ite	\$1.13	2.5 PPM	319 \$	0.00 \$		2.3 mg/L	111 \$	0.02 \$	-207 \$	0.02 \$	4
					Phosphate 1	Totals			319 \$	0.00 \$			111 \$	0.02 \$	-207 \$	0.02 \$	1	
	Sodium Hydroxide	!]16_C	MP_3103 SODI	IUM HYDROXIDE METERIN	OXIDE METERING PUMP NO. 1 Sodium Hydroxide 1		oxide 1	\$0.1985	16.67 PPM	0\$	0.00 \$		0 mg/L	0\$	0.00 \$	0\$	0.00 \$	4
	Sodium Hydroxide	!]16_C	MP_3203 SODI	IUM HYDROXIDE METERIN	NG PUMP NO. 2	Sodium Hydroxide 1		\$0.1985	16.67 PPM	373 \$	0.03 \$		0 mg/L	0\$	0.00 \$	-373 \$	-0.03 \$	1
	Chlorine	CI	_4XX	CHLORINE FEEDER SE	LECTED	Chlorine 2		\$0.2685	3.75 mg/L	114 \$	0.00 \$		3.5 mg/L	40 \$	0.01 \$	-73 \$	0.01 \$	1
	Chlorine	CI	_4XX	CHLORINE FEEDER SE	LECTED	Chlorine	3	\$0.2685	0 mg/L	0\$	0.00 \$		0 mg/L	0\$	0.00 \$	0 \$	0.00 \$	4
						Chlorine T	otals			114 \$	0.00 \$			40 \$	0.01 \$	-73 \$	-0.01 \$	4
	Ammonia	AM_	CF_4XX	AMMONIA FEEDER SE	LECTED	Ammonia	a 3	\$2.06	1.05 mg/L	244 \$	0.00 \$		1.01 mg/L	89 \$	0.02 \$	-154 \$	0.02 \$	1
	Cost/30-Day Cost/Year Difference Difference -96,129 \$			Ammonia T	otals			244 \$	0.00 \$			89 \$	0.02 \$	-154 \$	0.02 \$	1		
				Finished T	otals			1,066 \$	0.03 \$	5.13 MGD		247 \$	0.05 \$	-818 \$	0.02 \$	1		
				Plant Chemica	al Totais			4,728 \$	0.30 \$			1,520 \$	0.30 \$	-3,207 \$	0.00 \$	1		
						Plant Power	Totals			1,263 \$	0.09 \$							
						Plant Combine	d Totals			5,987 \$	0.39 \$							



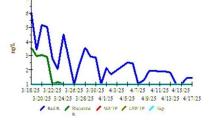
Tools in Place for Operational Improvement Power Cost Analysis

Tools in Place for Operational Improvement Treatment Cost Model


Membrane Plant Primary Costs per Million Gallons



Tools in Place for Operational Improvement Environmental Lab


Raw Water Geosmin Concentrations (Taste & Odor Causing)

10 319/25 3/22/25 3/29/25 3/30/25 4/3/25 4/9/25 4/9/25 4/9/25 3/20/25 3/24/25 3/29/25 4/9/25 4/9/25 4/9/25 4/9/25 MWTP / LSWTP / Combined

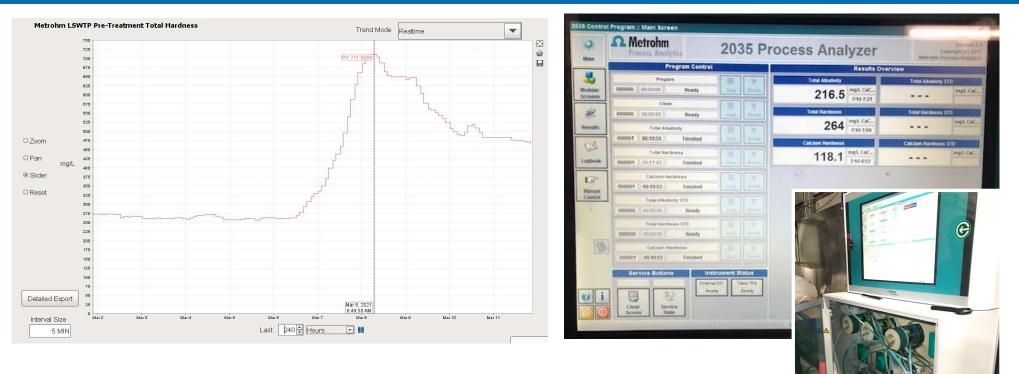
Geosmin

MIB

	WQ13 Bromate	WQ 18 Bromate	WQ 19 Bromate	Red River Geosmin	Shey. River Geosmin	WQ 13 Geosmin	WQ 18 Geosmin	Tap Geosmin	Red River MIB	Shey. River MIB	WQ 13 MIB	WQ 18 MIB	Тар МІВ
	ug/L	ug/L	ug/L	PPT	PPT	PPT	PPT	PPT	PPT	PPT	PPT	PPT	PPT
3/18/25	<0.150	0.292	0.238	6.025	3.558	<1.000	<1.000	<1.000	4.845	1.393	<1.000	<1.000	<1.000
3/19/25	<0.150	0.364	0.198	3.439	2.982	<1.000	<1.000	<1.000	3.504	1.446	<1.000	<1.000	<1.000
3/20/25	0.168	0.259	0.199	5.183	3.040	<1.000	<1.000	<1.000	5.071	1.088	<1.000	<1.000	<1.000
3/21/25	<0.150	0.229	0.181	5.055	2.907	<1.000	<1.000	<1.000	3.963	1.155	<1.000	<1.000	<1.000
3/22/25				2.821	<1.000	<1.000	<1.000	<1.000	3.030	<1.000	<1.000	<1.000	<1.000
3/23/25				2.065	1.150	<1.000	<1.000	<1.000	2.728	<1.000	<1.000	<1.000	<1.000
3/24/25	<0.150	0.178	<0.150	4.522	<1.000	<1.000	<1.000	<1.000	2.549	<1.000	<1.000	<1.000	<1.000
3/25/25	<0.150	0.245	0.152										
3/26/25	<0.150	0.238	<0.150	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
3/27/25	<0.150	0.250	<0.150	2.382	<1.000	<1.000	<1.000	<1.000	2.433	<1.000	<1.000	<1.000	<1.000
3/28/25	<0.150	0.196	<0.150	3.567	<1.000	<1.000	<1.000	<1.000	2.719	<1.000	<1.000	<1.000	<1.000
3/29/25				2.944	<1.000	<1.000	<1.000	<1.000	2.759	<1.000	<1.000	<1.000	<1.000
3/30/25				2.901	<1.000	<1.000	<1.000	<1.000	2.934	<1.000	<1.000	<1.000	<1.000
3/31/25	<0.150	0.185	<0.150	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
4/1/25	<0.150	<0.150	0.180	2.154	<1.000	<1.000	<1.000	<1.000	1.938	<1.000	<1.000	<1.000	<1.000
4/2/25	<0.150	0.194	0.157	1.688	<1.000	<1.000	<1.000	<1.000	1.501	<1.000	<1.000	<1.000	<1.000
4/3/25	<0.150	0.327	0.183										
4/4/25	<0.150	0.327	<0.150										
4/5/25				2.526	<1.000	<1.000	<1.000	<1.000	2.010	<1.000	<1.000	<1.000	<1.000
4/8/25				2.489	<1.000	<1.000	<1.000	<1.000	1.750	<1.000	<1.000	<1.000	<1.000
4/7/25	0.158	0.219	0.182	1.056	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
4/8/25	<0.150	0.235	0.205	1.289	<1.000	<1.000	<1.000	<1.000	1.168	<1.000	<1.000	<1.000	<1.000
4/9/25	<0.150	0.266	0.216	1.948	<1.000	<1.000	<1.000	<1.000	1.577	<1.000	<1.000	<1.000	<1.000
4/10/25	<0.150	0.277	0.221										
4/11/25													
4/12/25				1.886	<1.000	<1.000	<1.000	<1.000	1.104	<1.000	<1.000	<1.000	<1.000
4/13/25				1.830	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
4/14/25	<0.150	0.311	0.288	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000	<1.000
4/15/25	<0.150		<0.150	1.003		<1.000		<1.000	<1.000		<1.000		<1.000
4/16/25	<0.150		<0.150	1.464		<1.000		<1.000	<1.000		<1.000		<1.000
4/17/25	<0.150		<0.150										

Tools in Place for Operational Improvement Treatment Cost Model

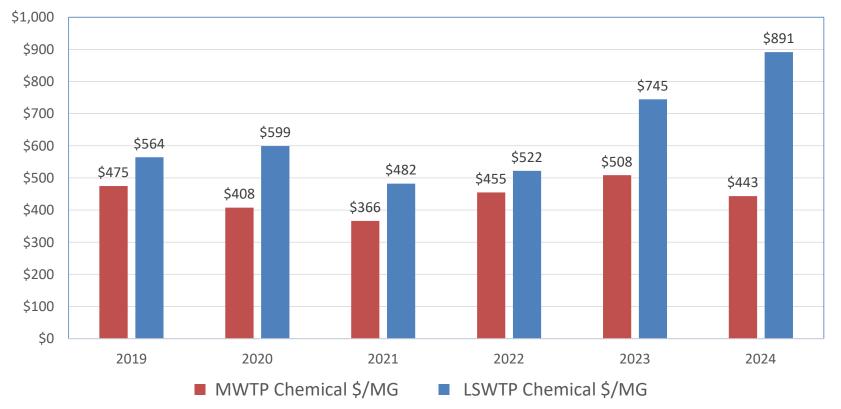
Cut			= = »·		General	Conditional For	Normal mat as Check Cell	Bad	Good		Neutral Linked Cell	Economic and	lation	Incest	Delete Format		m * Arr p		
ipboard	B I U + E G Font	5	Align	iment is		Formatting * Ta	ble -		Styles					* *	v v Cells	🦑 Clear *	Filter * Select		
	i × √ f _x Ja		D	E	F	G	Н	Т	J	K	L	М	N	0	P	Q	R S	Т	
			Jar	Tests															
	PACL density	1.343	C	DADMAC density	1.051	Jar size (L)	2.0												
	Stock sol. (mg/L)	20,000	;	Stock sol. (mg/L)	20,000	Starting DOC													
	PACL price/lb	\$0.485		DADMAC price/lb	\$1.490														
											Calculated	L J							
	Jar:	1	2	3	4	5	6		1	2	3	4	5	6					
ratio	PACL	80%	80%	80%	90%	90%	90%		80%	80%	80%	90%	<mark>90%</mark>	90%					
	DADMAC	20%	20%	20%	10%	10%	10%		20%	20%	20%	10%	10%	10%					
	total	1	2	3	1	2	3		1	2	3	1	2	3					
dose mg/L)	PACL								0.8	1.6	2.4	0.9	1.8	2.7					
	DADMAC								0.4	0.8	1.2	0.2	0.4	0.6					
ol. (µl)	PACL	80	160	240	90	180	270												
er Jar	DADMAC	40	80	120	20	40	60												
Turk	pidity <mark>(</mark> NTU)																		
DC	OC (mg/L)																		
DOC	removal (%)																		
	price/MG	\$8.21	\$16.41	\$24.62	\$6.13	\$12.25	\$18.38												



Tools in Place for Operational Improvement Treatment Cost Model

୷ୢୄୢୢୄୢଽୄ୷					0			Vembrane plant flow planner - Excel										Daniel Hami	in 🖭		0
and the second se	Page Layout For					you want to do															A Sha
te ✓ Cut Cali Cali Cali B	bri • 11 I <u>U</u> - ⊞ - ,	• A • =				° % * *.0 .00			Format	Auto Fill • Clear			8: Find	181							
Clipboard 5	Font	G.	Ali	gnment	5	Number		Styles Cells				diting	Jelet								
				grimerie		Humber		Styles Cells				aning									
3 * I × I	√ ƒ _x MWT	P Raw (WQ7 me	etrohm)																		
A	В	с	D	E	F	G	н	I.	J	к	L	м	N	C	P	Q	R	S	т	U	V
MWTP Influent	# of RO Skids		RO to Degas	RO Bypass	MWTP effluent	Total effluent															
(MGD)	to Degas	% Recovery		(MGD)	(MGD)	(MGD)		Comments	1												
(MGD) 15.42	4	78%	6.23	1.2	7.43	16.54															
	ated RO Bypass to			1.83					_												
estima																					
	Palk	Malk	Tot Hardness	Ca Hardness	Mg Hardness	Non-Carbs	Test Date/Time	Comments													
MWTP Raw (WQ7 metroh	m) 6	198	461	206	255	263	4/14/25 9:00	Use WQ7 on scada metrohm "M1 Raw" when blended													
Est. Finished MWTP		40	91	42	50	51		RAW WATER RED													
Actual MWTP (WQ 13)	0	40	91	42	50	51	n/a	using estimated													
			↑ minimum	hardness = 90																	
	LSWTP infl.	RO to 2	Indaries	LSWTP effl.	UF Backwash																
1	(MGD)	Skids	(MGD)	(MGD)	(MGD)																
1	6	2	3.11	9.11	0																
5																					
5	Palk	Malk		Ca Hardness			Test Date/Time	Comments													
Primary #1 tests	59	78	210	151	59	132			_												
Primary #2 tests							4/5/25 9:00		-												
9 Primary #3 tests	34	52	205	120	85	153			_												
0 Average Primaries	47	65	208	136	72	143			-												
1 Est. Finished LSWTP	_	46	143	93	51	97 97			-												
Actual LSWTP (WQ 18)		46	143	93	51	97	n/a	using estimated	_												
Est. at High Service	0	44	120	70	50	76	1		-												
			120 t: 120	/0	50	/6			_												
(uses "Actual" values)	High Service r	hardness target	120																		
7 Estimated RO Tot H	20	Ect	imated Lime D	ant Primarios	Hardness Target:	208															
Estimated RO NC H	10	ESU	iniated Linie P	ant Fulldiles	naroness talget.	200															
Estimated RO Ca H	10																				
Estimated RO M Alk	10																				
Type in gray cells.																					
Type in gruy censi																					
8																					
5																					
5																					
7																					
Sheet1 S	heet2 (+)																				

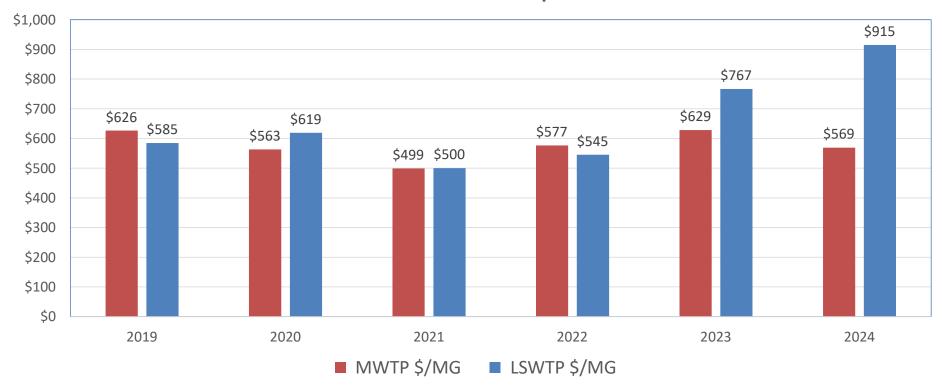

Tools in Place for Operational Improvement Continuous Monitoring



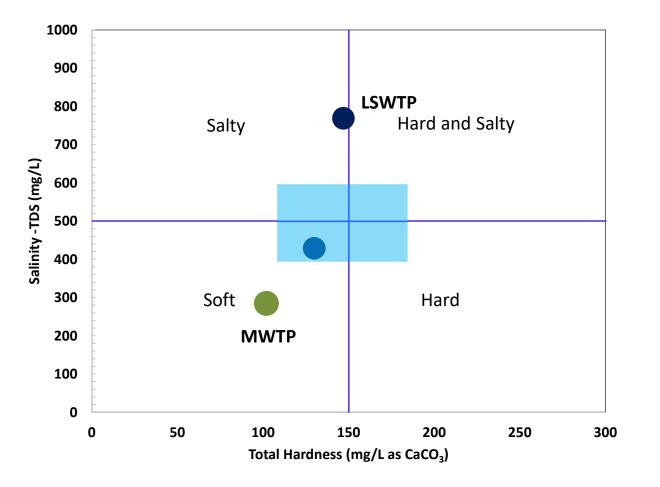
Accurate Cost to Produce Water at Each Plant and Finished Water Quality from Each Plant are Key to Achieve the Impossible Triangle

Major Cost to Produce Water

Chemical Cost

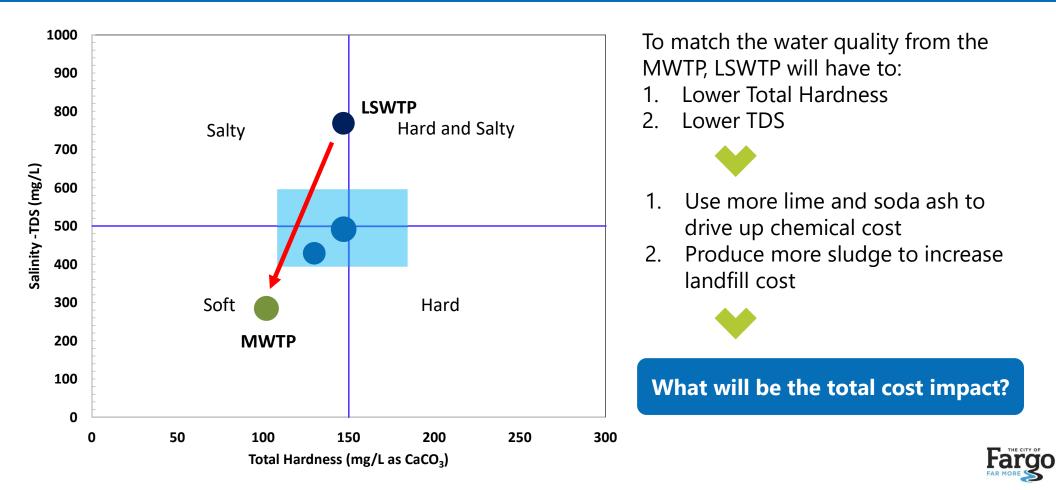

Chemical Expense

Power Cost


Power Expense

Cost to Produce Water

Chemical + Power Expense


LSWTP and MWTP Finished Water Quality

The finished water from the Membrane WTP is much softer, lower TDS , and lower TOC.

LSWTP and MWTP Finished Water Quality

Production Cost Impact

\$3,500,000 Annual \$ adder on Chemical and Power LSWTP \$3,019,672 Salty Hard and Salty \$3,000,000 1 600 S \$2,500,000 400 Soft Hard MWTP 200 \$2,000,000 0 100 150 200 \$1,297,000 Total Hardness (mg/L as CaCO₃) \$1,321,883 \$1,500,000 \$1,058,264 \$959,363 \$1,000,000 \$810,455 \$612,716 \$500,000 \$0 2019 2020 2021 2022 2023 2024 Annual Savings Running MWTP —Average

Chemical and Power Annual Cost Adder at LSWTP

Strategy to Run Both Plants

Knowing the membrane process is more cost-efficient, the plant staff relies more on the MWTP to manage both water quality and production costs.

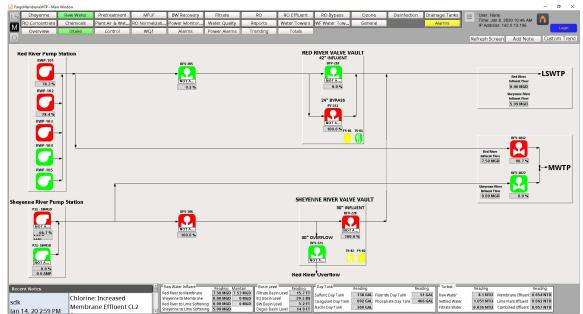
- **1. Maintain high production** at the membrane water treatment plant (WTP).
- **2. Transfer RO permeate** to the lime-softening WTP to support overall system performance.
- **3. Slightly elevate total hardness** in the effluent from the lime-softening basins to reduce lime and soda ash usage and associated chemical costs.
- **4. Minimize scaling** in the primary softening basin and downstream processes to help lower operations and maintenance (O&M) expenses.

Supporting Projects

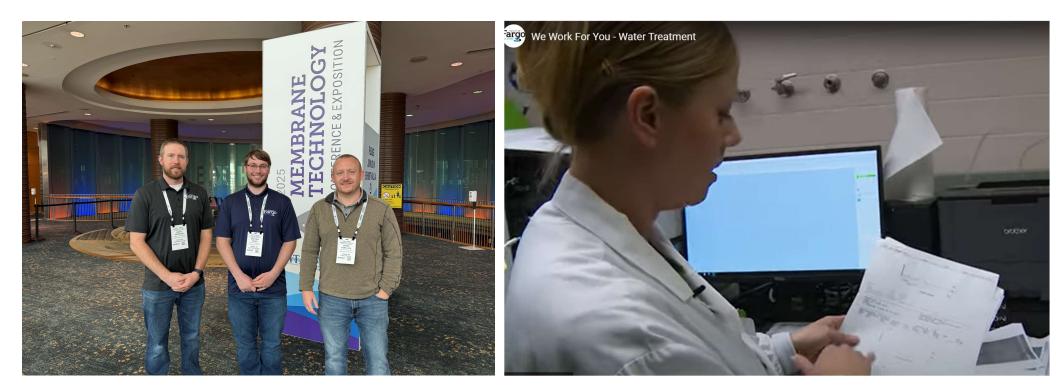
A series of projects/programs aimed at enabling Fargo WTP staff to operate both plants with optimal cost efficiency and water quality:

- 1. Red and Sheyenne Raw Water Intake Projects
- 2. Raw Water Meter/Valve Vault Project (with photos)
- 3. Grow Our Own Staff
 - Routine Staff Training Program
 - Conferences/Workshop
- 4. Empowering our staff to develop innovative solutions.

Supporting Projects – Intake Projects



Supporting Projects – Raw Water Valve Vault



Supporting Projects – Routine Training Program

Plant Innovations and Operations Creativities to Get the Job Done

Membrane Replacement Schedule

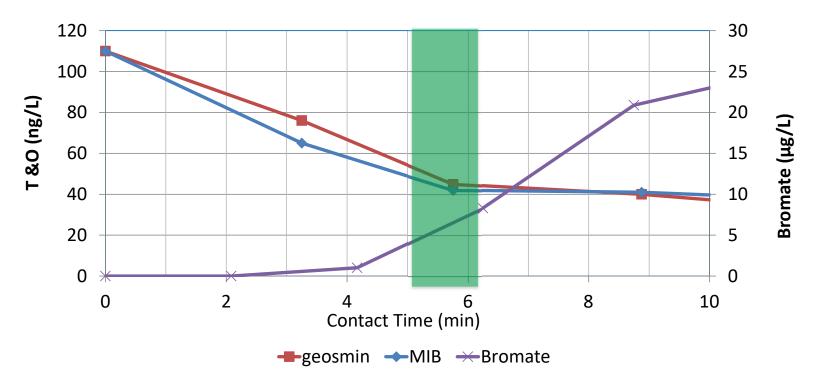
Accelerate UF membrane replacement schedule:

- Release the stress on the operation team to repair broken fibers
- Increase MWTP treatment availability to manage the overall cost and production

Steady pace to replace RO membranes

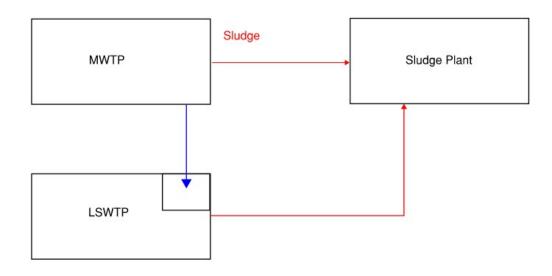
- Competitive RFP to reduce the replacement cost
- Manage RO permeate quality

Select Appropriate Technology

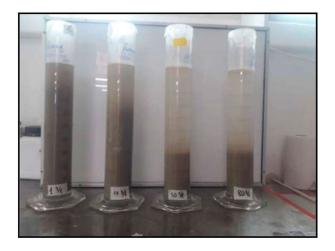

3

Liquid Oxygen (LOX) –VSA Installation

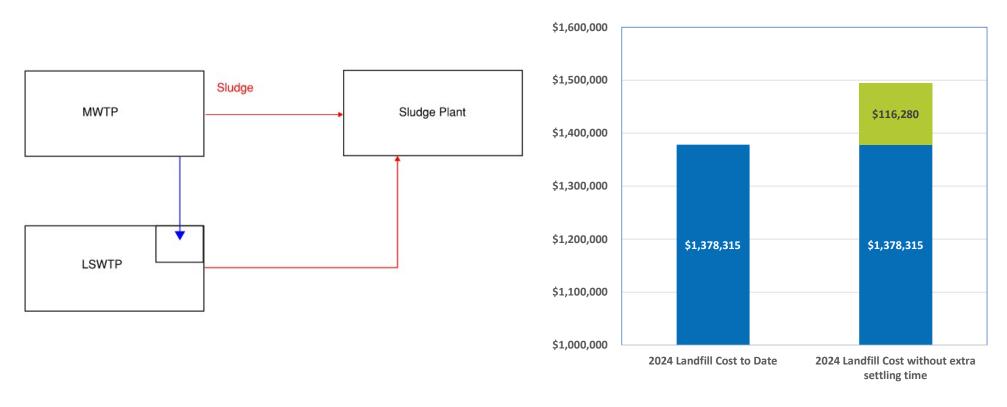
- Annual usage reduction: 624 tons •
 - 2017-2018 (Ave): 1,065 tons
 - 2022-2023 (Ave): 441 tons
- Cost reduction: **\$88,875** in 2024. •


Data Driven Operation Decision to Improve Water Quality

T&O Removal and Bromate Formation Mitigation


Fargo WTP T&O Ozone Pilot Study (2013)

Creative Plant Operation – Sludge Thickening



Solids content increased from 37% up to 41% on an average.

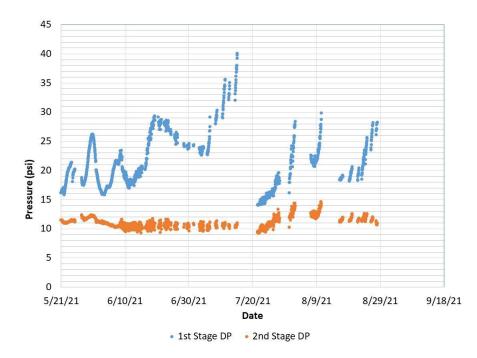
What is the impact?

Creative Plant Operation – Sludge Thickening

Compared to 2023 Data

Staff Go Above and Beyond

0.02 N Standard acid solution for online hardness and alkalinity instrument:


Home-Made

- 40% sulfuric acid: \$0.53-\$0.77/lb
- Weekly Usage: 80-100 mL
- Annual Cost: \$6-\$9

Annual Saving: \$40,000

Staff Go Above and Beyond

- 1. Feed chlorine to Filtrate wetwell
- 2. Feed sodium bisulfite to quench chlorine residuals
- Relocate anti-scalant feed point
- 4. Install an inline mixer
- 5. Feed hydrogen peroxide to RO feed
- 6. Test various anti-scalants
- 7. Test a biocide (NSF approved)
- 8. Evaluated various CIP regimes
- 1) Circulate time/flow rate
- 2) Soaking time
- 3) CIP chemicals

- Rinse the 1st stage lead elements
- 10. Replace the RO element interconnectors
- 11. Replace RO brine seals
- 12. Relocate 1st stage lead RO elements
- 13. Blackboxes monitoring
- 14. Bacteriological testing (HPC)
- 15. Membrane autopsy
- 16. Cleaning study

Cost Efficiency

1. MWTP Design: \$1.30 million annually

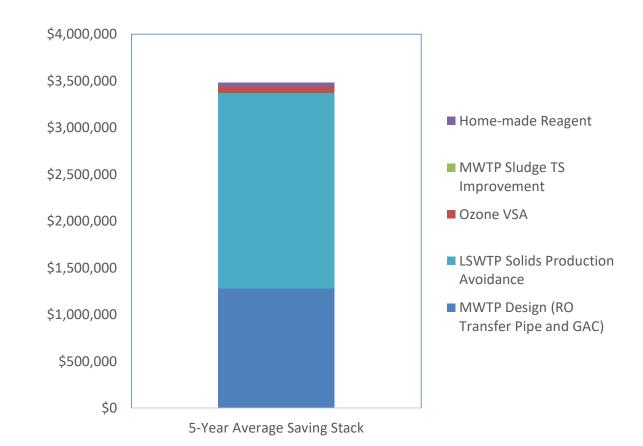
- RO Transfer line
- Biological GAC after ozone-peroxide
- Cost information analysis tools

2. LSWTP Solids Production Avoidance (\$1,7-\$3.3 million)

3. Ozone: Phase 2: \$60,000 annually

• VSA System Installation

4. MWTP Sludge Settling: \$100,000-\$150,000 annually


- 2024 to landfill: 37% → 41%
- Hauling less water
- Less sludge plant polymer use (\$38,000)
- 5. Analyzer Reagent Savings: \$40,000 annually

6. What's left: More than \$200,000 annually

- Increase MWTP/RO operation
- RO CIP Optimization
- Lime softening WTP process optimization

Cost Efficiency

Cost Efficiency

What is in the Near Future?

Master Planning: Next 2-3 Years

Every 7 years or so....

Assess Whole Water System

- Water Plant
- Raw Water Supply
- Water Distribution System
- Future Financial Needs

Work In-progress

- LSWTP Processes Rehab
- Treatment Process Optimization (CO2, Ozone,...)
- City-wide AMI project
- Lead Service Line Replacement

QUESTIONS? THANK YOU!

T. Hall, Water Utility Director, Fargo Q. Chang, Senior Advanced Technical Specialist, AE2S

