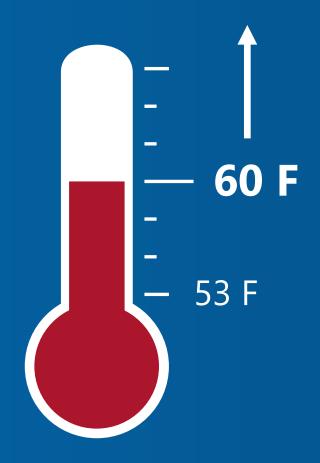
Zebra Mussel Mitigation Strategies

Outline

- Zebra Mussel Basics
- Mitigation Basics
- Copper Biocide Systems
- Ion Generation Systems
- In River Systems

Zebra Mussel Basics


- Lifespan of 3-5 years
- Veligers are free-moving larvae within the water column
- Attached by byssal threads
 - Have the ability to detach and relocate
- Growth occurs faster in warmer water
- 18-30 days from fertilization to settling phase

Zebra Mussel Basics

Generally seasonal

- Spawning assumed to occur continuously once it's started
- Optimum spawning occurs above
 60 °F but can occur as low as 53 °F

Mitigation Basics

- Physical and Chemical Mitigation **Options Available**
- Physical:
 - Velocities greater than 6.5 FPS prevent veligers from settling¹
 - Pigging: only feasible in pipelines
 - Hand removal

1: USACE Zebra Mussel Resource Document. Trinity River Basin, Texas. Published June 2013.

Mitigation Basics

- Chemical Mitigation: Involves oxidants
- Goal is to keep veligers from attaching with their byssal threads
 - Copper Biocides
 - Neat fed
 - Onsite generation
 - UV Usually ineffective due to low transmittance of raw surface waters

Mitigation Basics

- Chlorine High raw water TOC creates DBP concerns
- Chlorine Dioxide Mixed results if it performs better or worse than chlorine
- Hydrogen Peroxide Requires 9 times higher dose than chlorine it not economically competitive
- Ozone High capital and O&M costs
- Potassium Permanganate Does not form DBP

Potassium Permanganate

Adults

- Concentrations below 4
 PPM are ineffective for adults
- 8 PPM caused 50% mortality after 96 hours (4 days)

Veligers

- 4 PPM caused 50% mortality after 180 hours (7.5 days)
- 8 PPM caused 50% mortality after 120 hours (5 days)

Coyle et. al. Potassium permanganate's effect on zebra mussel adults and veligers. 2014

Copper Biocide Systems

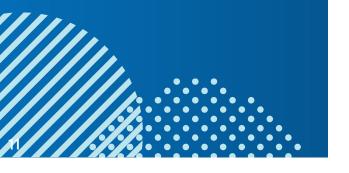
What is it?

Proprietary blends containing copper sulfate

Also toxic to algae and aquatic insects

Pros

Copper **Biocide Systems**


- Operator familiarity
- Lower capital cost
- Higher dosage (60 PPB Cu) leads to better/quicker mortality rates
- Not generally detected by zebra mussels¹

Copper Biocide Systems

- Very corrosive pH of 0.2-0.3
- Secondary containment required
- Storage over 500 pounds requires 3-hr fire rated walls
- "Toxic" Requires space to be sprinkled and contain shower/eyewash

Copper Biocide Systems

Ion Generation Systems

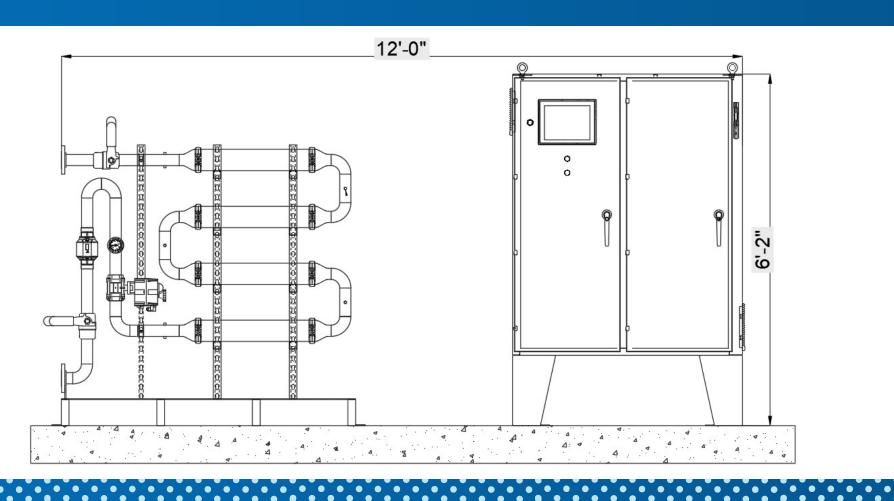
What is it?

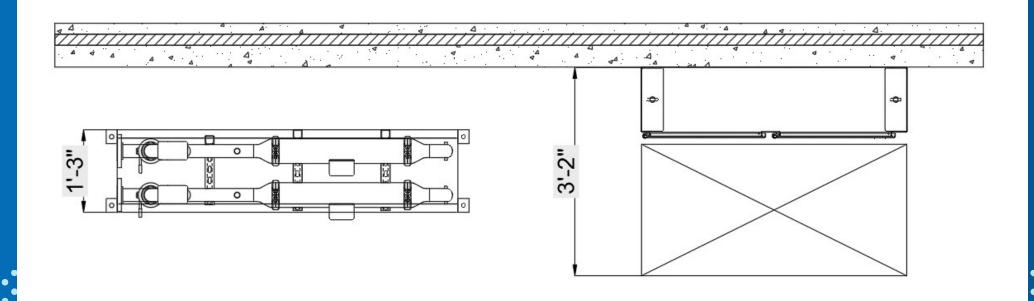
Utilizing electricity and a copper anode to create copper ions

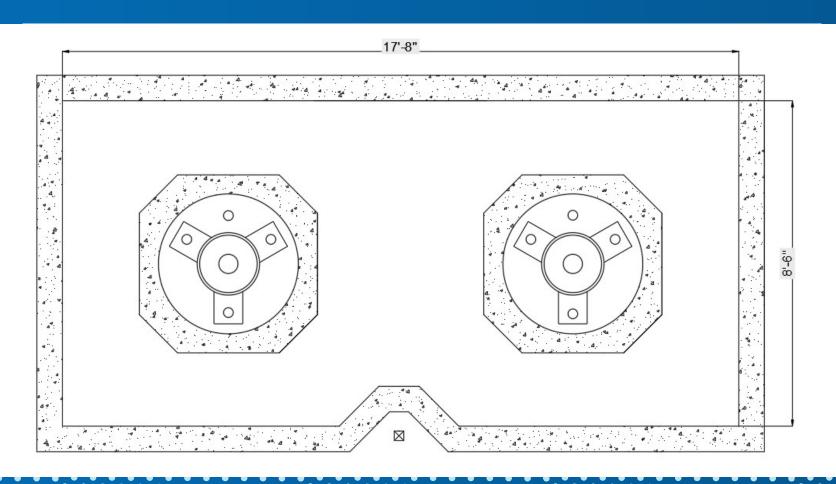
Originally developed 40 years ago to protect ship cooling systems

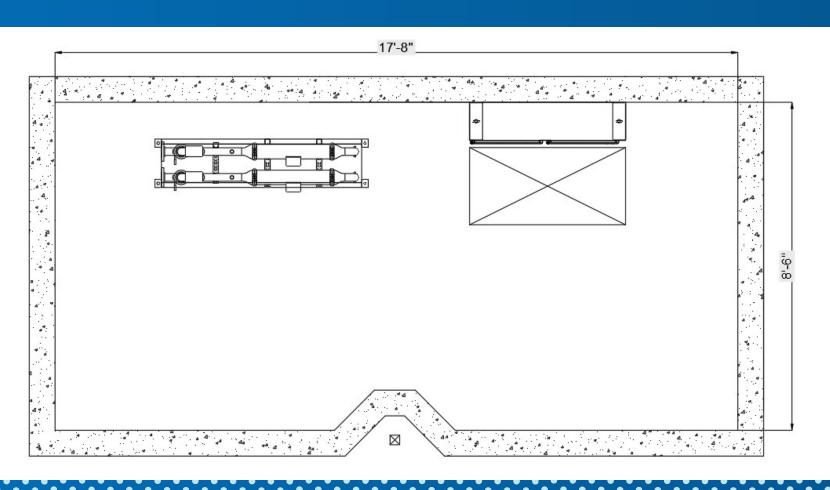
Pros

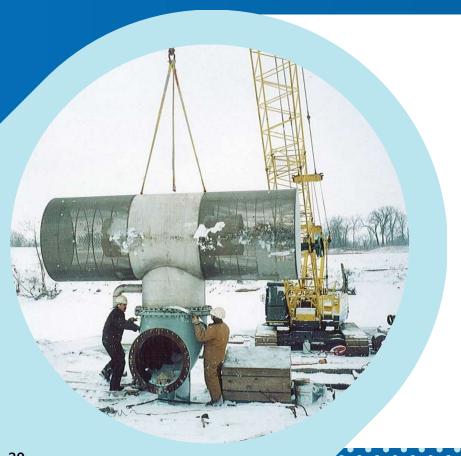
- Annual anode replacement
- No storage, only 'conveyance'
 - No secondary containment
 - No fire rating concerns


Cons


Ion Generation Systems




- Effectiveness varies with alkalinity¹
- Lower dosage (15 PPB) leads to lower mortality rates
- Existing adults can detect it and close, reducing effect¹



In River Mitigation

- Biocides cannot be utilized on intake screens
- Mechanical/Physical Removal
- Copper alloyed intake mitigate growth on the screen itself
- Coatings

Coatings

- Available as a retrofit option
- Silicone based
- Prone to wear
- Effective life of 6-years¹

1: USACE Zebra Mussel Chemical Control Guide. Version 2.0. Published July 2015.

Cost Comparisons

	Copper Biocide	Ion-Generation	Alloy Screen	Alloy Screen
Capacity	40 MGD	40 MGD	20 MGD	25 MGD
Cost	\$290,000	\$525,000	\$262,000	\$280,000
Date	November 2023	July 2023	April 2023	April 2023
Source	Contractor Bid	Engineer's Estimate	Supplier Quote	Supplier Quote

Thank you! Questions?

Jordan Grasser Operations Manager Jordan.Grasser@ae2s.com

